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Commercially available automated vehicles require drivers to maintain focus on their driving environment and
be prepared to fully control their vehicles (i.e., perform a takeover) when critical incidents occur (e.g., sudden
automation failures). Therefore, drivers are discouraged from engaging in non-driving tasks that cause visual or
manual distractions. Auditory interactions, despite being considered a safe alternative, can consume the atten-
tional resources of drivers, causing them to respond poorly to critical situations. This study investigates (1) how
varying levels of auditory interactions affect takeover performance and (2) what physiological contexts are
related to the takeover performance in SAE Level 2 automated driving. For the investigation, 50 drivers wore
wearable devices that collected various physiological signals and performed six different auditory tasks during L2
automated driving in a simulator-based experiment. The results showed that auditory interactions could degrade
the takeover performance and that the task demand for auditory interactions nonlinearly affected the takeover
performance, possibly owing to behavior changes intended to prevent the task difficulty from becoming exces-
sively high. Additionally, physiological contexts such as pupil diameter, dispersion of eye movements, and inter-
beat interval, were found to be related to the takeover performance. Subsequently, we discussed drivers’
behavior changes, practical deployment of in-situ physiological measures, and design implications for mitigating
the degradation of takeover performance due to auditory tasks.

1. Introduction

Commercially available automated vehicles can perform many
driving-related tasks. However, human involvement is still crucial in
automated driving. For example, although the automated driving sys-
tems embedded in current commercial vehicles (level 2 or partially
automated driving systems) can manage the longitudinal acceleration
and lateral position of a vehicle (e.g., adaptive cruise control and lane-
keeping systems), driver intervention is still required when automa-
tion fails (SAE International, 2021). In other words, although manual
operation of the steering wheel and pedals is not necessary, drivers are
still required to perform an Object and Event Detection and Response
(OEDR) task (SAE International, 2021, Council of European Union
2022), which involves consistently monitoring driving situations and
intervening (i.e., takeover; taking over the control as soon as automated
driving fails). Even if the next advanced automated system (level 3 or
conditionally automated driving system) becomes commercially avail-
able, it can only be activated in limited circumstances, such as roads that
are exclusive to heavy vehicles (e.g., no pedestrians, bicycles, and
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motorcycles) (UNECE, 2021). Therefore, the L2 system is expected to be
utilized in most situations.

Although the current automated driving system requires drivers to
perform an OEDR task, studies have indicated that during automated
driving, drivers often engage in secondary tasks, which can cause driver
distractions, diverting their attention from the driving environment.
Specifically, secondary tasks refer to any non-driving related activity
that drivers perform while driving (or during automated driving) (Regan
et al., 2008). An observational study by Banks et al. (2018) showed that
during automated driving (e.g., Tesla Autopilot mode), drivers often
took their hands off the steering wheel and engaged in visual-manual
secondary tasks (e.g., drinking coffee), possibly due to their compla-
cency and trust in automated systems. Additionally, drivers are more
likely to stop looking ahead and perform visual-manual secondary tasks
during automated driving than during manual driving (Naujoks et al.,
2016, Solis-Marcos et al., 2018). Engaging in visual-maual secondary
tasks during automated driving can cause visual distractions, which
reduce the ability of a driver to respond if the automation system fails,
resulting in various risky situations. For example, visual-manual
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interactions during automated driving cause drivers to take longer to
resume manual driving and, after the resumption of control, degrade
their lateral control (Louw et al., 2019).

As an alternative to visual-manual interactions, auditory interfaces
are often a preferred option for providing in-vehicle interactions (Ayoub
et al., 2019, Alvarez et al., 2015, Sodnik et al., 2008). Secondary tasks
involving auditory interactions do not follow the same modalities as
those of monitoring tasks, which require the visual-manual operations
of the driver. Therefore, while engaging in auditory tasks, drivers can
simultaneously perform an OEDR task. However, literature hints that
auditory tasks can cause cognitive distractions, which can potentially
degrade the performance of monitoring tasks, leading to a worse take-
over performance. For example, multiple-resource theory (Wickens,
2008) implies that drivers have limited attentional (or cognitive) re-
sources. Therefore, the performance in either or both of driving and
secondary tasks can decrease if the overall cognitive resources required
for the tasks exceed the driver’s limited cognitive resources. Several
studies have already shown that in the manual-driving context, auditory
tasks can lead to distracted driving (Kim et al., 2020, Strayer et al., 2015,
Strayer et al., 2017, Loew et al., 2023).

While in-vehicle auditory tasks are conjectured to distract drivers
and thus degrade their ability to counteract automation failures, to the
best of our knowledge, the effects of auditory interactions in current L2
automated vehicle contexts are still under-investigated. Therefore, in
this study, we investigated (1) how varying levels of auditory secondary
tasks affect the takeover performance in L2 driving contexts and (2)
which are the typical physiological contexts related to the takeover
performance in L2 driving contexts. Our investigation would lay a
foundation for developing an intelligent interruption management sys-
tem that automatically estimates whether a driver can safely engage in
auditory tasks during L2 automated driving by monitoring the driver
with physiological sensors.

2. Background and related works
2.1. Driving automation levels and roles of drivers

As shown in Table 1, According to SAE (SAE International, 2021), the
levels of driving automation are classified into six levels from Level
0 (LO, fully manual) to Level 5 (L5, fully automated). Depending on the
automation level and the aspects of the automated driving task, drivers
need to perform different sets of the following driving tasks: (1) steering
and acceleration, wherein drivers control the lateral (e.g., steering
wheel) and longitudinal (e.g., acceleration and deceleration) positions
of their vehicles; (2) monitoring driving situations, wherein drivers
constantly perceive, understand, and predict objects and events on a
road; and (3) executing a fallback procedure when the automation
system fails, wherein drivers take over the control of a vehicle from the
system as a response in critical situations where automation does not
operate appropriately.

Except for LO (i.e., a fully manual driving level with no automation),
driving tasks are supported (partially) by automated driving systems.
Regarding systems at levels L1 - L4, they can only operate under certain
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conditions. In an L1 system, the automation system controls either the
lateral or longitudinal position of the vehicle, and the driver needs to
control the other position. Vehicles with the L2 system can manage both
the longitudinal and lateral positions. Although drivers on L2 driving are
not required to operate the steering wheel and pedals, they need to
perform OEDR tasks (i.e., monitoring the driving environment and
resuming control in case the automation fails). In an L3 system, the
vehicle controls both the longitudinal and lateral positions and always
initiates a takeover request when the driver needs to take over the
control; therefore, the drivers no longer need to monitor driving situa-
tions. In an L4 system, under limited circumstances, the system supports
fully automated driving and does not require takeover. Finally, in an L5
system, the system fully supports automated driving under all
conditions.

This study focuses on L2 driving automation, which is the automa-
tion level of most current commercial automated vehicles (e.g., Tesla
Autopilot). As previously mentioned, at this level, the drivers need to
engage in the OEDR tasks although they do not need to manually control
their vehicles while automated driving is activated. Until L5 (or fully
automated) vehicles are commercially available, L2 systems are likely to
be used in most circumstances because UN Regulation No. 157 restricts
the operation of advanced systems to roads that are physically separated
from opposite traffic, with no pedestrians or cyclists (UNECE, 2021).

2.2. Effects of secondary tasks on takeover performance in semi-
automated vehicles

As shown in Table 2, prior studies on the effects of secondary tasks on
takeover performance mainly considered L3 systems, where the drivers
need to resume control of their vehicle as soon as possible after a
takeover request is triggered. It is well known that a time delay occurs
while individuals are switching from one to another task (Janssen et al.,
2019). Thus, studies involving L3 system have investigated the time
taken by a driver to switch from a visual-manual secondary task to a
takeover task in response to a takeover request. For example, Mok et al.
(Mok et al., 2017) investigated the time budget required for a driver
playing a game on a tablet PC to successfully take over in response to a
takeover request. While these studies provided important insights, their
findings cannot be directly applied in L2 contexts. In L2 contexts, drivers
need to simultaneously perform monitoring and secondary tasks, which
is different from L3 contexts, wherein such multitasking is unnecessary.

In L2 driving contexts, auditory interactions are more favorable for
technology usage than visual-manual interactions, considering that
auditory interactions do not involve the visual and manual operations
present in the OEDR task (i.e., drivers can perform monitoring and
auditory tasks simultaneously). However, only few studies have focused
on the effects of auditory tasks on takeover performance. Notably, pre-
vious studies have not considered the demands of different auditory
tasks. For example, Blommer et al. (2015) examined how the takeover
performance varied between two conditions where drivers performed a
visual-manual task (i.e., watching a video) and an auditory task (i.e.,
listening to the radio) while simultaneously performing a monitoring
task.

SAE levels of driving automation (SAE International, 2021). O = required/supported, /\ = partially required, X = not required/not supported.

Condition for Driver’s task during automation System’s

Monitoring driving situations Fallback when the system fails takeover request

Level supporting automation Steering & acceleration
0: no driving automation None o

1: driver assistant Limited A

2: partial driving automation Limited X

3: conditional driving automation Limited X

4: high driving automation Limited X

5: full driving automation Always X

XXX O OO
X< O OO0
XX O XXX
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Table 2

Summary of secondary task types in previous research.’ SURT (Surrogate reference task): searching for a circle that differs in size from others.® Describing images:
with three images and scrambled letters, completing a word related to every image by combining the letters. St. task = standardized task; Natural. task = Naturalistic
task. (References (Liu et al., 2024; Du et al., 2024; Sanghavi et al., 2023; Politis et al., 2017; Wang et al., 2022; Chen and Chen, 2021; Pakdamanian et al., 2021;
Morando et al., 2021; Du et al., 2020a; Du et al., 2020b; Eriksson et al., 2019; Berghofer et al., 2018; Wandtner et al., 2018; Wan and Wu, 2018; van der Heiden et al.,
2017; Feldhiitter et al., 2017; Mok et al., 2017; Mok et al., 2015; Bueno et al., 2016; Gold et al., 2016; Gold et al., 2015; Walch et al., 2015; Schwalk et al., 2015;
Radlmayr et al., 2014; Louw et al., 2019; Blommer et al., 2015; Arkonac et al., 2019; Yang et al., 2021) is cited in Table body part).

Studies Level

Visual tasks

Auditory tasks

Standardized task

Naturalistic task St. task  Natural. task

Describing images(z)
Reading road signs
Selecting a shape
Reading & typing
Solving arithmetic

1-back task
2-back task

surT™
Game

Email

Texting

Web browsing

Reading

Watching a video

Video transcription
Calendar task

Backseat searching
Temperature control
Music selection

2-back task

Repeating verbally
Radio

Audiobook
Conversation with human
Conversation with agent
Game

Liu et al., 2024
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N. Du et al., 2024
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Sanghavi et al., 2023

Politis et al., 2023

Wang et al., 2022

Chen and Chen, 2021

Pakdamanial et al., 2021

Morando et al., 2021

N. Du et al., 2020a

N. Du et al., 2020b

Erikson et al., 2019

Berghofer et al., 2018

Wandtner et al., 2018

Wan et al., 2018

Heiden et al., 2017

Felditter et al., 2017

Mok et al., 2017

Mok et al., 2015

Bueno et al., 2016

Gold et al., 2016

Gold et al., 2015

Walch et al., 2015

Schwalk et al., 2015

Radlmayr et al., 2014

Louw et al., 2019

Blommer et al., 2015

Arkonac et al., 2019
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Yang et al., 2021

Multiple Resource Theory (Wickens, 2002, Wickens, 2008) indicates
that in an L2 automated driving context, auditory tasks can potentially
degrade the takeover performance. According to Multiple Resource
Theory, human cognitive resources are divided into multiple channels or
pools, each associated with different modalities (e.g., visual or audi-
tory). When two tasks utilize different resources or modalities (e.g.,
performing visual and auditory tasks simultaneously), the tasks are less
likely to interfere with each other, as they draw from separate cognitive
pools. However, despite utilizing different modalities, the performance
of these tasks can still decrease. This decline is due to the overall limited
capacity of human cognitive resources (i.e., human central processor)
(Wickens, 2002, Wickens, 2008, Moray, 1967). In other words, when the
combined cognitive demand of the two tasks exceeds this total capacity,
the performance of the tasks can decrease due to the insufficient avail-
able resources to perform both tasks. This implies that, in L2 automated
driving contexts, if the cognitive demand of an auditory task is high,
drivers are more likely to have insufficient resources to perform both
auditory and monitoring tasks. In such cases, the performance of either
or both tasks can be degraded depending on the human’s resource
allocation policy (Wickens, 2008, Navon and Gopher, 1979). The driver
may: (1) allocate sufficient resources to monitoring, reducing those

available for the auditory task, (2) allocate sufficient resources to the
auditory task, reducing those available for monitoring, or (3) allocate
insufficient resources to both tasks. In scenarios (2) and (3), the per-
formance of the driver’s monitoring task would decrease (Strayer and
Johnston, 2001).

Given that a monitoring task requires a considerable amount of
mental resources, and auditory tasks are more cognitively demanding
than visual- manual interactions (Faure et al., 2016), it is crucial to
investigate the performance impact of auditory tasks at various levels of
cognitive demand. However, no previous studies have focused on the
takeover performance when drivers perform various auditory tasks.
Several studies have investigated the impact of auditory interactions on
driving in manual driving contexts (Kim et al., 2020, Strayer et al., 2015,
Strayer et al., 2017, Loew et al., 2023). For example, Strayer et al.
(2015) found that the larger the cognitive load of an auditory secondary
task, the slower the braking reaction time of a driver response to the
sudden braking of a leading vehicle. In addition to multiple resource
theory, these findings also hint that in L2 driving contexts, auditory
interactions may degrade the takeover performance. However, these
findings may not be directly applicable to L2 driving contexts since the
primary task differs between manual driving contexts (i.e., monitoring
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and maneuvering tasks) and L2 driving contexts (i.e., only a monitoring
task).

2.3. In-vehicle auditory secondary tasks

In vehicular contexts, prior studies have considered various auditory
secondary tasks. These secondary tasks can be categorized as (1) stan-
dardized tasks and (2) naturalistic tasks. Standardized tasks are designed
for comparability and repeatability, although they may not fully
represent real-world situations. For example, the n-back task (or delayed
digit recall task) has been widely applied in distracted driving scenarios
in both automated driving contexts (Gold et al., 2015, Radlmayr et al.,
2014) as well as manual driving contexts (Kim et al., 2018, Kim et al.,
2020). It induces systematically structured cognitive demands depend-
ing on the number of delayed digits (i.e., n) that participants need to
recall (Mehler et al., 2011); a larger value of n corresponds to greater
cognitive demand. In our work, we considered the n-back task as a
standardized task and adhered to the standard procedure outlined in
(Mehler et al., 2011).

Naturalistic tasks have also been widely considered owing to their
high generalizability in real-world scenarios (Pakdamanian et al., 2021,
Gold et al., 2016). These naturalistic tasks include both uni-directional
interactions (listening only; e.g., listening to a radio (Blommer et al.,
2015) or audiobook (Berghofer et al., 2018)), and bi-directional in-
teractions (listening and speaking; e.g., a conversation with a voice as-
sistant (Wang et al., 2022)). Uni-directional interactions require only
language comprehension, whereas bi-directional interactions require
both language comprehension and production. Consequently,
uni-directional interactions generally impose lower cognitive demand
compared to bi-directional interactions (Lee et al., 2017, Rann and
Almor, 2022). Furthermore, prior research has found differences in the
cognitive demands between arithmetic and linguistic auditory tasks
(Horrey et al., 2009). Our work expands upon previous research by
considering a wider range of naturalistic tasks with varying cognitive
loads, encompassing both uni-directional and bi-directional in-
teractions, as well as arithmetic and linguistic tasks.

2.4. Takeover scenarios and performance metrics

Prior studies on takeover performance in automated driving contexts
have considered various takeover scenarios (e.g., jaywalking (van der
Heiden et al., 2017, Wang et al., 2022), a sudden stop of a leading
vehicle (Wan and Wu, 2018), and a sudden appearance of an obstacle
(Pakdamanian et al., 2021, Wan and Wu, 2018)). These scenarios can be
classified into two situations depending on whether the vehicle provides
a takeover request (i.e., whether it is L2 or L3): (1) a takeover situation
without a request (L2), wherein the driver needs to take over the control
of a vehicle in response to such event, and (2) a takeover request situ-
ation (L3), wherein the driver needs to take over the control of a vehicle
in response to a takeover request. L2 vehicles are still limited to offering
takeover requests to drivers. Therefore, prior studies on the L2 vehicles
have considered takeover situations without a request (Louw et al.,
2019, Blommer et al., 2015, Arkonac et al., 2019). For example, Blom-
mer et al. (2015) considered a takeover scenario where a driver needed
to take control after a leading vehicle suddenly maneuvered to the left
lane, in response to a concealed vehicle that had stopped directly ahead
of the leading vehicle. In contrast, prior studies on L3 vehicles have
considered takeover request situations since these vehicles always pro-
vide takeover requests when a driver needs to take over the control of a
vehicle. For example, Wang et al. (2022) considered various takeover
request situations in which takeover requests had been provided due to
different types of events (e.g., pedestrians jaywalking, encountering
road construction ahead, etc.). Since our work was conducted in L2
driving contexts, our scenario did not include the takeover request.

To assess the effect of secondary tasks on the takeover performance,
prior studies considered various takeover performance measures. These

measures can be divided into two main categories: (1) takeover reaction
time and (2) takeover quality. The takeover reaction time represents
how quickly a driver reacts to takeover requests or critical events. In L2
contexts, it is defined as the elapsed time from the onset of a critical
event (e.g., system malfunction) to the first moment of a reaction (Louw
et al., 2019). In contrast, studies on L3 contexts have considered the
elapsed time from the onset of a takeover request to the first moment of
the reaction (Chen and Chen, 2021, Wan and Wu, 2018). The takeover
quality focuses on how well drivers transition from automated to
manual driving after the takeover. It has been widely considered to
compensate for time-based measures (e.g., takeover reaction time)
because the time-based measures are insufficient for indicating the
capability of avoiding risk (or the safety levels in a takeover situation).
Other factors, such as situational awareness and takeover behavior (e.g.,
braking, steering, or both) also affect the capability (Louw et al., 2017,
Blommer et al., 2017). Therefore, takeover quality is an important
measure of takeover performance and has recently attracted the atten-
tion of researchers. Different measures are used, depending on the
takeover situation. For example, the collision (including driving onto a
sidewalk) was measured in a collision-avoidance situation (Wandtner
et al., 2018; Wan and Wu, 2018). In a curved or lane-keeping situation,
the deviation of the lateral position or steering-wheel angle of a vehicle
was measured (Mok et al., 2017; Pakdamanian et al., 2021). Since our
work considered collision-avoidance situations in the L2 driving
context, we measured takeover reaction time and collision.

2.5. Estimating driver distraction using sensor data

To ensure the safety of drivers in automated vehicles, it is important
to estimate driver distraction. Driver distraction refers to drivers
diverting their attention from driving to engage in secondary tasks. Prior
studies on the automated driving context, researchers mainly considered
visual distractions—driver distractions caused by the visual-manual
interaction. They leveraged physiological contexts (mostly eye gaze
information) of drivers obtained from wearable devices. For examples,
Berghofer et al. (2018) analyzed the off-road glance behavior of drivers
in the occurrence of visual distractions in L3 contexts and found that
gaze information could be used to estimate the task-switching time (or
takeover reaction time). In L2 contexts, Louw et al. (2019) examined the
glance behaviors of drivers and observed differences in glance duration
across different visual-manual secondary tasks.

Alongside visual-manual tasks, auditory-verbal tasks with large
cognitive load also contributes to driver distraction in the context of
manual driving (Kim et al., 2020, Strayer et al., 2015, Strayer et al.,
2017). In this case, sensor data associated with cognitive load has been
used to estimate cognitive distractions, which are the driver distractions
caused by the auditory-verbal tasks. Prior studies have found that
physiological contexts, such as galvanic skin response (GSR) (Mehler
et al., 2009), heart rate (HR) (Mehler et al., 2009), inter-beat interval
(IBI) (Henelius et al., 2009), gaze dispersion (Gold et al., 2016), and
pupil diameter (Kun et al., 2013), are associated with cognitive load.
According to these studies, as cognitive load increases, GSR, pupil
diameter, gaze dispersion, and HR increase, while IBI decreases. How-
ever, to our knowledge, no studies have focused on how physiological
contexts can be leveraged to estimate takeover performance in the
context of auditory interactions in L2 driving environments.

3. Research questions and hypotheses

Given the multiple resource theory and empirical studies, in vehic-
ular contexts, auditory interfaces are becoming increasingly preferred
(Ayoub et al., 2019, Alvarez et al., 2015, Sodnik et al., 2008, Wickens,
2002). Current L2 automated driving systems allow drivers to engage in
auditory interactions, as long as they keep their eyes on the road and/or
their hands on the steering wheel (Barry, 2022). However, according to
Multiple resource theory (Wickens, 2002, Moray, 1967), auditory
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secondary tasks can potentially degrade the takeover performance
depending on their cognitive demands. To the best of our knowledge, in
L2 driving contexts, no study has focused on the takeover performance
of drivers when they engage in auditory tasks with varying cognitive
demands. In manual driving contexts, several studies revealed these
potential hazards when the cognitive demand of auditory tasks was high
(Kim et al., 2020, Strayer et al., 2015, Strayer et al., 2017, Loew et al.,
2023). Extending this, our first research question is: “How varying levels
of auditory secondary tasks affect the takeover performance in L2
driving contexts.” We hypothesize that during L2 automated driving,
auditory tasks with high cognitive demands will degrade the driver’s
takeover performance because the drivers have insufficient cognitive
resources for both auditory and OEDR tasks. Whereas, auditory tasks
with low cognitive demands will not affect takeover performance
because the drivers have sufficient cognitive resources for both tasks.

H1a: Auditory tasks with high cognitive demands will degrade the driver’s
takeover performance.

H1b: Auditory tasks with low cognitive demands will not degrade the
driver’s takeover performance.

If there is any decline in the takeover performance owing to auditory
interactions, it is essential to identify potentially challenging situations
wherein drivers may not appropriately take over the control of a vehicle
in advance. One feasible approach could be to monitor and analyze the
physiological contexts of the drivers. Accordingly, our second research
question is: “Which are the typical physiological contexts related to the
takeover performance in L2 driving contexts.” To identify relevant
physiological measurements, we collected wearable sensor data associ-
ated with cognitive distractions (e.g., GSR, HR, IBI, pupil diameters,
gaze dispersion, and off-road glance rate), as well as data related to
visual distraction (e.g., off-road glance rate). We hypothesize that when
drivers engaged in auditory secondary task during L2 driving, physio-
logical contexts associated with cognitive distractions can be used to
estimate takeover performance. Conversely, since drivers can engage in
auditory interaction without visual distractions, physiological contexts
associated with visual distraction may not be effective for estimating
takeover performance in L2 driving.

H2a: The physiological contexts related to cognitive distractions,
such as GSR, HR, IBI, pupil diameters and gaze dispersion, will differ
depending on the takeover performance of a driver performing auditory
tasks.

H2b: The physiological contexts related to visual distractions, such as off-
road glance rate, will not differ depending on the takeover performance of a
driver performing auditory tasks.

4. Methods
4.1. Study design

In this study, we first selected six auditory secondary tasks and
measured their task-demand level in Section 4.4. Next, we conducted a
within-subject design experimental study by simulating an L2 auto-
mated vehicle in which the drivers performed the six auditory tasks
while simultaneously performing an OEDR task. Details of the experi-
mental procedure and an OEDR task are described in Section 4.3 and
Section 4.7. During the experiment, we measured the takeover reaction
times and success rates to answer RQ1 and collected the drivers’ phys-
iological signals to answer RQ2.

4.2. Apparatus

4.2.1. Automated vehicle simulator

We conducted an experiment using an automated vehicle simulator
with a vehicle cockpit module, as shown in Fig. 1. We considered a
driving simulator for driver safety as our experiment involved takeover
scenarios (details are illustrated in Section 4.3) wherein any failure in
takeover could lead to unfavorable outcomes (e.g., collision with a

Fig. 1. L2 automated vehicle simulator with a cockpit module: (1) a steering
wheel; (2) a brake pedal; (3) a speakerphone.

leading vehicle). The module consisted of a steering wheel, an acceler-
ator, and a brake pedal. We developed automated driving simulation
software based on CARLA (Dosovitskiy et al., 2017)—an open-source
platform for developing and testing automated driving algorithms—to
fully support a takeover scenario with the vehicle cockpit module. The
control of the vehicle was instantly returned to the driver (i.e., a tran-
sition from automated driving to manual driving mode) when the driver
either (1) manually operated the steering wheel and pedals or (2)
pressed a button on the steering wheel. In addition, the simulator logged
the vehicle control information (e.g., acceleration, brake, and steering),
position, and direction at 20 Hz.

4.2.2. Physiological sensors

We used three wearable devices to collect physiological signals: (1)
Pupil Core eye-tracking glasses from Pupil Labs, (2) an H10 chest band
from Polar, and (3) an E4 wristband from Empatica. The Pupil Core
glasses were used to measure the pupil diameter, dispersion of eye
movements, and fixation, sampled at 200 Hz. Then, the H10 chest band
was used to collect the heart rate (HR) and Electrocardiogram at sam-
pling rates of 1 and 130 Hz, respectively. Finally, the E4 wristband was
used to sample the galvanic skin response (GSR) at 4 Hz, HR at 1 Hz, and
photoplethysmography signals at 64 Hz.

4.3. OEDR task and critical events scenarios

Fig. 2 illustrates the experimental scenario. In our simulation soft-
ware, the ego vehicle automatically drove at 50 km/h in the right lane of
a two-lane one-way traffic road with each lane having a width of 4 m. A
leading vehicle, traveling at the same speed as the ego vehicle, was
located 27 m ahead. On each sidewalk along the road, pedestrians
appear at intervals of 37.6 m. In takeover situations, one of three critical
events can occur: (1) sudden braking of the leading vehicle and (2-3)
pedestrians jaywalking from either sidewalk. These events started at a
random time between 60 and 120 seconds after the ego vehicle started.
Since events can occur from either the front or both sides of the vehicle,
drivers had to monitor the entire road, including the front and both sides
of their vehicle. Each critical event lasted approximately two seconds to
complete (i.e., collision with the ego vehicle). For example, after the
leading vehicle stops, it takes two seconds for the ego vehicle to crash
into it. When a critical event occurred, the drivers need to take back
control of the vehicle (i.e., takeover) to avoid collisions.

4.4. Auditory secondary tasks

The participants performed three naturalistic tasks and three stan-
dardized (or pseudo) tasks in random order during the simulated L2
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Fig. 2. Three critical-event scenarios: (1) sudden braking of the leading vehicle and jaywalking of pedestrians from the (2) left sidewalk and (3) right sidewalk.

automation. They used a speakerphone mounted behind the steering
wheel to perform the secondary tasks (see Fig. 1). Once a secondary task
was completed, the next task was started immediately to keep the par-
ticipants engaged in secondary tasks.

4.4.1. Naturalistic tasks

For naturalistic tasks, we considered both uni- and bi-directional
interactions, considering that task demand levels can vary according
to interaction types (Lee et al., 2017, Rann and Almor, 2022, Horrey
et al., 2009). For the uni-directional interaction task, we selected
audiobook listening. For the bi-directional interaction task, we consid-
ered auditory texting and auditory gaming.

e Audiobook listening: A voice assistant verbally presented a 3-minute
excerpt from a farce story called “A Marriage Proposal” (Chekov,
1890). Before the task, the drivers listened to a different excerpt from
the same story to get accustomed to the speed and tone of the reader.
auditory texting: The researcher asked the drivers about their daily
lives (e.g., “What did you eat last night?”). Then, the drivers listened
to a text message and replied to the assistant in the form of voice
commands. When the researcher sends a question, a notification
sounds from the speaker. The driver then listens to the question and
responds to the researcher using the voice assistant. The voice
commands were similar to those of Google Assistant with Android
Auto. This task required the linguistic resources of the driver.
auditory gaming: The drivers played a classic guessing game called
“Guess the Number” (Binder et al., 2021), in which they attempted to
guess a randomly selected number between 1 and 100 in a minimum
number of attempts. The voice assistants gave feedback by saying
“Up” or “Down” if the answer was larger or smaller than the number
guessed by the driver, respectively; if the answer was correct, the
assistant said, “Correct.” This task requires the mental arithmetic
resources of the driver.

4.4.2. Standardized tasks: n-back tasks

While naturalistic tasks are realistic and likely to be performed in a
daily driving scenario, they lack comparability and repeatability
because there is no clear standard for such tasks. For example, while we
employed Guess the Number for auditory gaming, different types of
speech-based games may be employed in other studies. Therefore, we
additionally considered n-back (delayed digit recall) tasks as standard-
ized tasks (Mehler et al., 2011). Typically, 0- (low demand), 1- (mod-
erate demand), and 2-back (high demand) tasks were utilized.

For the n-back task, we followed the standard procedure described in
(Mehler et al., 2011). Our conversational agents sequentially presented
ten randomly selected numbers from 0 to 9 at 2.25-second intervals.
When each number was presented, the drivers were asked to respond
verbally with the last n'™ digit. For example, in the 0-back task, drivers
repeated each number after it was presented. In the 2-back task, drivers

repeated the third-to-last number in the sequence.

In addition to having high comparability and repeatability, these n-
back tasks allowed us to objectively measure the task performance (or
accuracy), which is defined as the ratio of the number of correctly
answered items to the total number of items. For example, if a person
correctly answered seven items for the 0-back task, the accuracy was
0.70.

4.4.3. Measuring demands of auditory secondary tasks

Before conducting our main study, we conducted a separate study to
analyze how our auditory tasks varied according to the task demands.
For this study, we recruited 25 participants (18 males and 7 females)
with a mean age of 22.7 years (SD = 1.7 years). They were asked to
perform each auditory task for two minutes. Once each task was
completed, they assessed the task demand using NASA-TLX (Hart and
Staveland, 1988) by following a procedure that includes a weighting
stage, as described in (Hart and Staveland, 1988). Participants were
each compensated approximately 10 USD.

The average task demands increased in the following order: 0-back
(M=10.9, SD=12.9), audiobook listening (v=11.0, sp=11.0), auditory gaming
(M=20.1, SD=14.5), auditory texting (y—2s.6, sp=17.2), 1-back ay-34.6, sp=23.0),
and 2-back (—57.3, sp—21.9). As shown in Fig. 3, we also statistically
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Fig. 3. Distribution of secondary tasks’ demands and their pair-wise compari-
sons. (*p < .05, **p < .01, ***p < .001, ****p < .0001).
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analyzed whether task demands differed by task type using a Repeated
Measures ANOVA and found significant differences in task demands (F
(3.32,79.75) = 40.78, p < .001, 172 = 0.47). In addition, our post-hoc
analysis revealed three distinct groups for which task demands
belonging to one group were statistically different from those of the
other groups: low-level (0-back, audiobook listening), moderate-level (1-
back, auditory texting), and high-level (2-back). auditory gaming was not
statistically differentiated between low and moderate levels. Therefore,
we did not include auditory gaming in any level groups and further
excluded it from RQ1 analyses. For RQ2 analyses, we considered all six
auditory secondary tasks since we needed to explore the relationship
between physiological context and the takeover performance for every
secondary task, irrespective of the difficulty group of the secondary task.

4.5. Measurements

4.5.1. Takeover performance measurements

We considered both time-based and takeover quality measures.
These measures were calculated using simulation logs (see Section
4.2.1). For the time-based measure, we considered the takeover reaction
time. The reaction time is defined as the elapsed time from the onset of a
critical event (e.g., jaywalking) to the first moment of the reaction of a
driver (e.g., braking or steering to take control of the vehicle). While
there were no instances of false reactions, in two cases, drivers failed to
respond to takeover situations while engaging in auditory secondary
tasks. In these cases, the reaction time was set as the time between the
occurrence of a critical event and the first moment of the crash (i.e., 2
seconds).

Time-based measures have limitations in indicating the safety levels
in a takeover situation, because other factors (e.g., type of takeover
strategy and the complexity of the road) can also significantly impact the
safety levels in such situations (Louw et al., 2017, Blommer et al., 2017).
Therefore, to gain a more comprehensive understanding of the safety
levels during takeovers, we incorporated a takeover quality measure,
specifically the takeover success. The takeover success refers to whether
a driver successfully takes the control of a vehicle and avoids a collision
in a critical event. It has a binary outcome: success or failure. Takeover
was set as a failure if the ego vehicle crashed into other objects (e.g., the
leading car or pedestrian) or drove onto a sidewalk.

4.5.2. Physiological measurements

We considered physiological features commonly appearing in pre-
vious works involving multitasking and driver distraction (Du et al.,
2020, Mehler et al., 2009, Henelius et al., 2009, Kun et al., 2013, Solhjoo
et al., 2019). In detail, we obtained the galvanic skin response (GSR),
heart rate (HR), inter-beat interval (IBI), pupil diameters, dispersion of
eye movements, and off-road glance rate from wearable sensor data (see
Section 4.2.2). We then calculated the physiological contexts from
measurements collected within a 10-second window preceding a critical
event. For example, the off-road glance rate was derived by dividing the
number of times there were visual fixations away from the center screen
of the cockpit module by the number of times there were whole fixa-
tions. The other measurements within a 10 second window were
aggregated to calculate the mean and SD. We note that the choice of a
10-second window duration was based on an empirical observation that
gave the most significant result for our analyses among varying window
durations used in prior studies (Solovey et al., 2014, Liang et al., 2007).

4.6. Recruitment and participants

We recruited 50 drivers who had valid driving licenses. Drivers who
had not driven in the last month or did not drive at least once a week
were excluded from the recruitment pool. Additionally, for the smooth
progression of the experiment, participants who were not familiar with
voice assistants were also excluded from the pool. Given that the criteria
of the U.S. National Highway and Transportation Safety Administration

(NHTSA) for distracted driving studies (NHTSA, 2012), we considered a
wide age range and equal numbers of males and females to improve the
generalizability. For each age group (i.e., twenties, thirties, forties,
fifties, and sixties), there were ten drivers (5 females and 5 males). The
average age was 43.8 years (SD = 14.3 years, range = 20-67 years), and
the average amount of driving experience was 16.9 years (SD = 11.8
years, range = 1-43 years). The drivers were compensated approxi-
mately 30 USD for participation.

4.7. Procedures

The experiment lasted for 120-180 minutes with a 40-minute break.
After signing the Institutional Review Board (IRB) consent form, the
drivers completed a brief questionnaire asking about their demographic
information (e.g., age, driving experience) and their experience with
voice assistance and auditory tasks (e.g., audiobook listening or speech-
based texting). The drivers then wore three wearable devices (eye-
tracking glasses, a H10 chest band, and an E4 wristband; for details, see
Section 4.2.2). Next, we briefed the drivers about the simulator and
takeover situation and asked them to practice a series of driving trials to
familiarize themselves with the simulated automated driving and take-
over situations. They performed at least four driving trials and were
allowed to perform additional trials. On average, the driving trials lasted
for five minutes each.

Next, the drivers experimented with seven different scenarios in
which they performed an OEDR task (i.e., monitoring driving environ-
ments and then manually taking over control of the vehicle to avoid a
collision) while engaging in auditory secondary tasks during L2 auto-
mated driving. Each scenario lasted for 1.5 minutes on average (SD =
21.6, range = 1-2). The orders of the scenarios and auditory secondary
tasks were counterbalanced by balanced Latin-square design. Before
each scenario, we explained a corresponding secondary task and asked
the drivers to continue performing the task trials until they were familiar
with the tasks. The task trials lasted for an average of 7 minutes; this
time varied depending on how quickly drivers familiarized themselves
with the tasks. After each scenario, the drivers were given a 5-minute
break.

4.8. Analysis method

We conducted statistical analyses for our two research questions. For
RQ1, we conducted two mixed-model analyses. In each analysis, we
statistically analyzed how the takeover performance differed when the
driver simultaneously performed an OEDR task and an auditory sec-
ondary task (e.g., listening to an audiobook) and when they only per-
formed the OEDR task (i.e., baseline condition). As shown in Table 3, for
the dependent variables, we used takeover reaction time and takeover
success. The fixed effects among independent variables were the types of
auditory secondary tasks. Additionally, we included drivers and critical-
event types (crossed with drivers) as random effects to control the non-
independence of the data. A binary logistic regression model was
employed to analyze the takeover success because this variable had bi-
nary (dichotomous) outcomes. The reaction time, which was in the form
of continuous numeric outcomes, was modeled by linear regression. For
additional analyses, we transcribed the interview records and used af-
finity diagramming.

Table 3

Description of dependent variables.
Dependent Descriptions
variables

Reaction time The elapsed time from the onset of a critical event to the first
moment of the reaction of a driver.
Whether a driver successfully takes control of a vehicle and

avoids a collision in a critical event.

Takeover success
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Table 4
Description of independent variables for Hypothesis 2.

Independent variables Descriptions

Pupil diameter M
Pupil diameter SD
Dispersion M
Dispersion SD
Off-road glance rate

Mean for 10 seconds of the average pupil diameter of the driver’s eyes.

Standard deviation for 10 seconds of the average pupil diameter of the driver’s eyes.

Mean for 10 seconds of the gazes dispersion within a fixation.

Standard deviation for 10 seconds of the gaze dispersion gazes within a fixation.

The division between the number of times that fixations were away from the center screen of the cockpit module by the number of whole fixations.

IBI M Mean for 10 seconds of the time interval between successive heartbeats.
IBI SD Standard deviation for 10 seconds of the time interval between successive heartbeats.
GSR M Mean for 10 seconds of the electrical conductance of the skin, which varies with its moisture level.

GSR SD

Standard deviation for 10 seconds of the electrical conductance of the skin, which varies with its moisture level.

For RQ2, we also conducted two multilevel regression analyses to
minimize the effects of outliers and erroneous assumptions regarding
the shape of the distribution (Field and Wilcox, 2017). In each analysis,
we statistically analyzed how each physiological contextual factor
accounted for the reaction time or takeover success. For the dependent
variables, we used takeover reaction time and takeover success. The
independent variables were the physiological contexts. Table 4 shows
the descriptions of the physiological contexts used as the independent
variable. Before the analyses, we checked whether the independent
variables satisfied the primary assumptions of the analyses (e.g.,
normality, homoscedasticity, and multicollinearity). In this process, we
excluded features such as the mean and SD of the HR because they had
violated the assumption of multicollinearity (Thompson et al., 2017).

5. Results

5.1. RQI: how varying levels of auditory secondary tasks affect the
takeover performance?

In this section, we reported the descriptive statistics of the experi-
mental results and statistically analyzed how takeover performance
varies with different types of auditory-verbal secondary tasks. Addi-
tionally, based on the results of the statistical analysis and interviews,
we conducted a follow-up analysis to statistically examine drivers’
auditory task performance.

5.1.1. Descriptive statistics

The repeated-measures correlation (Bakdash and Marusich, 2017)
between the reaction time and the takeover success was negatively
moderate (r = —0.43, p < .001), indicating that a longer reaction time
corresponded to a lower takeover success. Considering the average
takeover performance, the baseline (no secondary task) condition had
the shortest reaction time and the highest takeover success (see Table 5).
Except for the baseline condition, the reaction time was the shortest for
0-back and the longest for auditory texting. Conversely, the takeover
success was the highest for 0-back and the lowest for auditory texting
and 1-back.

5.1.2. Takeover performance

We statistically analyzed how the reaction time and takeover success
varied depending on the task conditions compared to the baseline con-
dition. Our results indicated that auditory secondary tasks degraded the
takeover performance and that their effect on the performance varied
according to the task demands. As shown on the left side of Table 6, the
takeover reaction time was significantly longer for the moderate- (1-
back: = 0.08, p = .014; auditory texting: # = 0.11, p < .001) and high-
level (2-back: # = 0.11, p < .001) conditions than for the baseline. In
addition, the post-hoc analysis indicated that the reaction times did not
differ significantly among the moderate- and high-level conditions (1-
back vs. 2-back: mean diff. = 0.034, t = 1.086, p = .279; auditory texting
vs. 2-back: mean diff. = 0.004, t = 0.134, p = .894). Next, as shown on
the right side of Table 6, thle takeover success was only significantly

Table 5
Descriptive statistics of takeover performance.

Reaction time (s) Takeover success

Secondary task Mean SD Percentage n
Baseline 0.88 0.20 86 43
Low level

0-back 0.88 0.24 82 41
Audiobook listening 0.91 0.21 76 38
Moderate level

1-back 0.96 0.25 68 34
Auditory texting 1.02 0.26 68 34
High level

2-back 0.98 0.21 72 36

lower for the moderate-level condition (1-back: f = —1.14, OR = 0.32, p
= .036; auditory texting: # = —1.14, OR = 0.32, p = .036) than for the
baseline condition.

Our analysis revealed different results from the H1.a. There was no
statistically significant difference in takeover success between the high-
level and baseline conditions. Interestingly, the moderate-level condi-
tion showed a statistically significant difference compared to the base-
line condition. To understand these results, after the analysis, we
conducted an additional interview with the following questions: (1)
How did you engage in the scenario when L2 driving without secondary
tasks versus with secondary tasks? (2) How did you engage in the sce-
nario during L2 driving depending on the different types of secondary
tasks? Seventeen drivers agreed to the interview and provided insightful
responses. Our interviews revealed that 76% of the drivers we inter-
viewed (n=13/17) intentionally paid less attention to the high-level task
and more attention to the OEDR task. For example, P27 stated, “When I
was doing the 2-back task, I focused more on the road because I was
concerned about avoiding people jumping out onto the road.” Some
drivers indirectly mentioned a performance trade-off between the pri-
mary and secondary tasks. For example, P18 stated, I felt 2-back was far
more difficult than 1-back. (...) When I was doing the 2-back, I focused
more on checking the road. I thought it would cause an accident if I
didn’t do so because 2-back was too difficult. (...) I got an accident when
I was doing 1-back because I thought 1-back was not difficult, so I
engaged in both 1-back and checking an event.”

According to our interview analysis, one possible explanation for our
results could be the performance trade-off between the primary task (i.
e., the OEDR task) and the secondary task (i.e., the 2-back task). Fuller’s
Task-difficulty homeostasis model suggests drivers maintain a consistent
level of task difficulty and adjust their behavior to balance the level (e.g.,
reducing the difficulty when the level becomes high) (Fuller, 2005).
Similarly, in our study, as soon as facing difficulty to simultaneously
perform the OEDR and 2-back tasks, the drivers may adjust their
behavior, resulting in the performance trade-off. In other words, drivers
may have reduced their 2-back task performance to avoid collisions.

5.1.3. Follow-up analyses
We conducted follow-up analyses to validate our explanation of
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Table 6

Mixed-model analysis results for the effects of different secondary tasks on the takeover performance (*p < .05, **p < .01, ***p < .001).

Reaction time

Takeover success

Predictors $ (SE) t-value 95% CI P

S (SE) z-value Odds ratio (95% CI) p

(Intercept) 0.87 (0.02) 35.00 0.82 ~ 0.92 <.001
Low-level

0-back

Audiobook listening
Moderate-level
1-back

Auditory texting
High-level

2-back

0.02 (0.03) 0.50
0.04 (0.03) 1.48

-0.04 ~ 0.07 .615
-0.01 ~ 0.10 .139

0.08 (0.03) 2.46
0.11 (0.03) 3.42

0.02 ~ 0.14 .014
0.05 ~ 0.17 <.001
0.11 (0.03) 3.56

0.05 ~ 0.17 <.001

1.99 (0.46) 4.36 7.31 (2.98 ~ 17.95) <.001
-0.31 (0.58) -0.54

-0.73 (0.56) -1.32

0.73 (0.23 ~ 2.31) .593
0.48 (0.16 ~ 1.44) .188

-1.14 (0.54) -2.11
ok -1.14 (0.54) -2.11

0.32 (0.11 ~ 0.93) .036 *
0.32 (0.11 ~ 0.93) .036 *

ok -0.93 (0.55) -1.68 0.40 (0.13 ~ 1.17) .094

driver behavior changes in the high-level condition. In this section, we
analyzed two aspects of behavior changes: (1) secondary task behavior
and (2) takeover behavior.

Behavior Changes in a Secondary Task: We first analyzed driver
behavior changes in secondary tasks. If drivers intentionally paid less
attention to secondary tasks in the high-level condition, the performance
of the secondary tasks would be lower for the multitasking condition (i.e.,
performing multitasking of the OEDR and secondary tasks) than for the
single-task condition (i.e., performing only the secondary task). In
contrast, in moderate and low-level conditions, there would be no sig-
nificant difference between the multitasking condition and the single-task
condition.

In our experiment, for each scenario, the drivers first performed
secondary task trials to familiarize themselves with the tasks (see Sec-
tion 4.7). We statistically compared how the n-back task performance
differed under multitasking and single-task conditions across n-back
types. The n-back tasks induced systematically structured levels of task
demand in drivers according to the number of delayed digits, allowing
us to systematically compare the task performance across task demand
levels. We assumed that n-back task performances would be different if
changes in secondary-task behaviors occurred.

For the comparison, we conducted a repeated measures ANOVA. The
task performance (average accuracy) was included as a dependent var-
iable, and the n-back type (1-back vs. 2-back) and task condition (single-
task condition vs. multitasking condition) were included as independent
variables. To evaluate the task performance, we considered the average
n-back accuracy (the number of correct answers divided by the number
of required answers) for the last two attempts in the single-task condi-
tion and for the last two attempts before the occurrence of a critical
event in the multitasking condition. Only the 1-back and 2-back tasks
were used for the n-back type. The 0-back task was excluded because 0-
back was the same as 100% accuracy in both task conditions.

Fig. 4 shows the n-back task performances under the single-task
condition and the multitasking condition for the n-back type. As shown in
Table 7, our analysis indicated that both the main effect (p < .001) and
the interaction effect were significant (p = .042). Furthermore, the post-
hoc analysis indicated that the accuracy for the 2-back task was signif-
icantly lower in the main task condition than in the trial task condition
(mean diff. =0.103, t = 3.81, p < .001). In contrast, the 1-back accuracy
exhibited no significant difference (mean diff. = 0.036,t=0.18,p =.71)
between the main and trial task conditions. This result supported our
explanation of driver behavior changes in the 2-back condition since the
difference in the secondary-task performance between the main and trial
task conditions was only significant for the 2-back condition.

Behavior Changes in a Takeover Task: Next, we analyzed driver
behavior changes in takeover tasks. If drivers intentionally paid less
attention to secondary tasks and more attention to the OEDR task in the
high-level condition, takeover task behaviors would become more effi-
cient as the performance of secondary tasks decreases. In contrast, in
other conditions, takeover task behaviors would become more efficient
as the performance of secondary tasks increases, because drivers paid
their attention to both tasks. As shown in Fig. 5, our drivers exhibited
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Fig. 4. Accuracy of 1-back and 2-back task.

Table 7

Repeated measures ANOVA results for the n-back accuracy
Effects F p n”?
Task condition 15.96 .001 0.25
n-back type 18.09 .001 0.27
Task condition x n-back type 4.37 .042 0.08

two types of takeover tasks: (1) braking with steering (combined oper-
ating) and (2) braking only (single operating). Given that combined oper-
ating leads to more successful collision avoidance compared to single
operating (Louw et al., 2017, Rice and Dell’Amico, 1974, Lechner and
Malaterre, 1991), for the high-level condition, we assumed that drivers
would be more likely to exhibit combined operating for takeover tasks as
the performance of secondary tasks decreases.

For the analysis, we conducted a binary logistic mixed-model anal-
ysis to examine how n-back accuracy influenced the probability of
drivers engaging in combined operating across different n-back types. We
assumed that combined operating would occur more frequently in the
high-level condition as n-back accuracy decreased. Similar to our sec-
ondary task behavior analysis, we excluded the 0-back task from the
analysis since its accuracy did not change and included only the 1-back
and 2-back tasks for the n-back type. The dependent variable was the
takeover task. The independent variables were the n-back types, n-back
accuracy, and the interaction between them. We also included drivers
and critical-event types as random effects to control for the non-
independence of the data.
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Fig. 5. A heatmap of drivers’ takeover task behavior across n-back type.

Table 8

Mixed-model analysis results for the effects of n-back type and n-back accuracy on the takeover task (*p < .05, **p < .01, ***p < .001, ****p < .0001).

Takeover behavior (combined operating)

Predictors B (SE) z-value 0Odds ratio (95% CI) P

(Intercept) 60.6 -0.002 28,943 6.98 x 10%° (4.44 x 10%° ~ 1.10 x 10%) <.0001 *okk
Main effect

n-back type (1-back) -56.5 -0.002 -26,977 2.27 x10% (1.44 x 105 ~ 3,57 x 10'%) <.0001

n-back accuracy -39.3 -0.002 -18,757 8.64 x 10718 (5.49 x 1018 ~ 1.36 x 10717) <.0001

Interaction effect

1-back x n-back accuracy 46.5 -0.002 22,174 1.12 x 10%° (7.15 x 10%° ~ 1.74 x 10%%) <.0001 i

As shown in Table 8, all independent variables were statistically
significant. The significance of the n-back types (1-back) and the nega-
tive beta coefficient (f = —56.5, p < .0001) suggest that drivers were
more likely to exhibit combined operating in the 2-back condition than in
the 1-back condition. The significance of the n-back accuracy and the
negative beta coefficient (§ = —39.3, p < .0001) suggest that drivers
were more likely to exhibit combined operating as n-back accuracy
decreased. Additionally, the significance of the interaction effect and
positive beta coefficient (8 = 46.5, p < .0001) indicate that in the 1-back
condition, drivers were more likely to exhibit combined operating as n-
back accuracy increased.

While the results of our follow-up analyses supported our explana-
tion, further study in-depth research is required to rigorously investigate
into the impacts of behavior changes on takeover performance. In Sec-
tion 6.1 and Section 6.5, we further discussed these findings and future
research directions.

5.2. RQ2: which are the typical physiological contexts related to the
takeover performance?

In this section, we statistically analyze which physiological measures
are related to takeover performance.

5.2.1. Physiological contexts

Our analyses indicated that the pupil diameter, eye movement
dispersion, and IBI had statistically significant correlations with the
takeover performance. Specifically, as shown on the left side of Table 9,
pupil diameter SD, and eye-movements dispersion SD were significant.
Given that the coefficient value of the pupil diameter SD was positive (4

= 0.06, p = .025), drivers were more likely to exhibit longer reaction
times when they had higher variability in the pupil diameter before
performing a takeover task. Considering the negative coefficient value of
the eye-movements dispersion SD (8 = —0.19, p = .014), the reaction
times were more likely to be shorter when the drivers had higher vari-
ability in the dispersion of eye movements. As shown on the right side of
Table 9, the mean ( = 5.62, OR = 276.95, p = .010) and SD ( = 6.21,
OR = 496.37, p = .017) of the eye-movements dispersion and IBIs SD
were significant. The coefficient values of the mean and SD of the eye-
movements dispersion were positive, indicating that drivers were
more likely to succeed when the dispersion of eye movements was wider
or more varied. However, the coefficient values of the IBIs SD were
negative (f = —1.61, OR = 0.20, p = .012), indicating that drivers were
more likely to succeed in takeovers when the IBI SD was lower. The GSR
M, GSR SD, and off-road glance rate were not significant for the takeover
performance.

6. Discussion

Auditory interfaces have been widely deployed in-vehicle systems
with different levels of automation, from non-automated to condition-
ally automated vehicles (L0-L3). We conducted a quantitative study to
investigate the impact of in-vehicle auditory interactions on takeover
performance in L2 automated driving contexts. The results showed that
in-vehicle auditory interactions could negatively impact the takeover
performance, and that this impact varied depending on the task-demand
level. We also found that the takeover performance was significantly
associated with physiological contexts such as pupil diameter, disper-
sion of eye movements, and inter-beat interval (IBI). In the following, we

Table 9
Mixed-model analysis results for the effects of different physiological measures on the takeover performance (p < .05, **p < .01, ***p < .001).
Reaction time Takeover success

Predictors p (SE) t-value 95% CI p p (SE) z-value Odds ratio (95% CI) p
(Intercept) 0.92 (0.01) 79.82 0.90 ~ 0.95 <.001 1.54 (0.20) 7.57 4.67 (3.13 ~ 6.96) <.001 i
Pupil diameters M -0.08 (0.04) -1.78 -0.17 ~ 0.01 .076 -0.11 (0.71) -0.16 0.90 (0.22 ~ 3.64) .877
Pupil diameters SD 0.06 (0.02) 2.25 0.01 ~ 0.10 .025 -0.27 (0.46) -0.58 0.77 (0.31 ~ 1.90) .565
Dispersion M -0.11 (0.07) -1.60 -0.24 ~ 0.03 112 5.62 (2.16) 2.61 276.95 (3.99 ~ 19238.71) .010 o
Dispersion SD -0.19 (0.08) -2.48 -0.34 ~ -0.04 .014 6.21 (2.58) 2.41 496.37 (3.12 ~ 79007.83) .017 *
Off-road glance rate 0.01 (0.01) 1.01 -0.01 ~ 0.03 .316 -0.03 (0.13) -0.23 0.97 (0.75 ~ 1.25) .820
IBIM -0.01 (0.02) -0.46 -0.05 ~ 0.03 .650 0.36 (0.36) 0.99 1.43 (0.71 ~ 2.88) .321
IBI SD 0.03 (0.02) 1.52 -0.01 ~ 0.08 131 -1.61 (0.64) -2.52 0.20 (0.06 ~ 7.03) .012 *
GSRM 0.03 (0.06) 0.56 -0.08 ~ 0.14 577 0.66 (0.83) 0.80 1.93 (0.38 ~ 9.82) 426
GSR SD 0.00 (0.05) 0.08 -0.09 ~ 0.10 935 -1.12 (0.69) -1.63 0.33 (0.09 ~ 1.26) .105
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further discussed the interpretation of our findings, practical consider-
ations for deploying in-situ physiological measures, and design impli-
cations for mitigating the negative impacts of auditory secondary tasks
on takeover performance.

6.1. Effects of auditory interactions on takeover performances

Our work highlights that researchers and practitioners should care-
fully design in-vehicle auditory interactions (or interfaces) for safety in
L2 driving contexts. Specifically, our results showed that auditory sec-
ondary tasks in takeover situations could significantly increase the time
required to maneuver vehicles (i.e., increase in the reaction time) and/
or the probability of having a collision (i.e., decrease in the takeover
success). Our results contrasted with findings in prior studies involving
auditory interactions in L3 automated vehicles, wherein such in-
teractions did not impact the takeover performance (Pakdamanian et al.,
2021, Wandtner et al., 2018, Berghofer et al., 2018). For example,
Wandtner et al. (2018) investigated how different modality types of
secondary tasks (i.e., auditory—vocal vs. visual-vocal vs. visual-manual)
impacted the takeover performance in L3 contexts and found that when
compared to the no secondary task condition, the auditory-vocal sec-
ondary task did not result in a significant increase in the reaction time in
response to a takeover request.

In contrast with results in L3 contexts, our findings were similar to
those in prior studies involving auditory interactions in manual driving
contexts (Kim et al., 2020, Strayer et al., 2015). For example, Strayer
et al. (2015) investigated how the varying demands of auditory sec-
ondary tasks impacted the brake reaction time in response to the un-
predictable braking of the leading vehicle in manual driving contexts
and found that when compared to the condition without a secondary
task, the auditory task with a high demand resulted in a greater increase
in the brake reaction time. Specifically, similar to our results, Strayer
et al. found no difference in the brake reaction time when drivers had
been engaged in uni-directional driver-vehicle interactions (e.g.,
audiobook listening). In contrast, brake reaction time was longer when
drivers engaged in bi-directional driver-vehicle interactions (or
computer-mediated interactions; e.g., auditory texting).

One possible explanation for the similarities and differences in our
results compared to previous studies on manual driving (L2 vs. manual
driving) and L3 driving (L2 vs. L3 driving) could be the increased
workload experienced by drivers when performing an auditory task.
This increased workload may result from the need to perform an addi-
tional task (i.e., driving tasks in manual driving; OEDR tasks in L2
driving), in addition to the auditory task. In L3 driving contexts, drivers
can solely devote their attention on the auditory task until a critical
event occurs, without engaging in a primary task (e.g., monitoring task).
In contrast, in manual and L2 contexts, drivers must simultaneously
allocate attention to both the auditory task and the primary task. Similar
to our explanation, the literature also suggests that the overall workload
experienced by the drivers when performing secondary tasks is signifi-
cantly higher for manual and L2 driving than for L3 driving (Figalova
et al., 2024).

6.2. Task-demand levels and driver behavior changes

As discussed in Section 2.2, prior studies have not considered the
impacts of varying levels of auditory interaction on takeover perfor-
mance in L2 automated driving contexts. Our results showed that the
impacts of auditory secondary tasks on takeover performance varied
according to their task-demand level. We initially hypothesized that the
higher cognitive demand required by secondary tasks would be associ-
ated with a lower takeover performance. Our findings showed that the
reaction time for critical events adhered to such expectations, given that
the reaction time was significantly higher in the moderate- and high-
level conditions than in the baseline condition. However, surprisingly,
the takeover success was only significantly reduced in the moderate-

level condition. The takeover success was insignificantly different for
the high-level and baseline conditions.

Prior studies also have reported similar findings regarding the
mismatch between reaction time and takeover success (Louw et al.,
2017, Zeeb et al., 2016). For example, Louw et al. (2017) found that
imposing additional demands on drivers through secondary tasks (e.g.,
n-back task) or driving environment factors (e.g., heavy/light fog)
increased reaction time but did not necessarily affect when drivers
initiated a collision avoidance maneuver or the quality of their subse-
quent vehicle control after the onset of the takeover. In addition, the
literature suggests that beyond the reaction time, other factors, such as
takeover tactics (e.g., utilizing both the braking and steering wheel), can
also influence the success of collision avoidance (Louw et al., 2017,
Blommer et al., 2017, Rice and Dell’Amico, 1974, Lechner and Mala-
terre, 1991).

In the high-level condition, our drivers exhibited behavior changes
by intentionally allocating less attention to the secondary task. This
behavioral change can be explained by the task-difficulty homeostasis
model (Fuller, 2005). This model suggests that drivers maintain a
consistent level of task difficulty and adjust their behavior for such
maintenance. In our study, the sharp increase in overall task difficulty
due to the 2-back task may prompt the drivers’ behavior changes. This
behavior has also been widely observed in the context of manual driving
(Regan et al., 2008). For example, studies involving manual driving have
shown that drivers tend to regulate their engagement with secondary
tasks to maintain their driving ability (or driving performance) (Kim
et al., 2020, Ismaeel et al., 2020). Literature has shown that in manual
driving contexts, drivers adjust their secondary task behavior (e.g.,
reducing attention or ceasing to engage in secondary tasks (Kim et al.,
2020, Ismaeel et al., 2020)) and/or change their driving behavior (e.g.,
reducing speed (Kim et al., 2020, Oviedo-Trespalacios et al., 2017),
maintaining a longer headway (Metz et al., 2015), and reducing lane
changes (Kim et al., 2020, Fitch et al., 2014)).

In our study, beyond the decrease of secondary-task performance in
the high-level condition, we also observed different takeover task be-
haviors linked to the changes in secondary-task performance, between
the high- and moderate-level conditions. Specifically, in the high-level
condition, drivers were more likely to exhibit combined operating (i.
e., using both the steering wheel and pedals) as a secondary task the
performance decreased. Whereas, in the moderate-level condition, the
combined operating was more likely to occur as the performance
increased. Given that takeover success was insignificantly different be-
tween the high-level and baseline conditions, in the high-level condi-
tion, the decrease of secondary-task performance-indicating reduced
attention on the secondary tasks-might have enabled drivers to pay
more attention to a monitoring task and led to more effective tactical
decision making before the applying combined operating during a
takeover. Literature suggests that the combined operating requires more
cognitive resources than either braking or steering alone (Oostwoud
Wijdenes et al., 2016). Takeover success was only significantly different
for moderate-level and baseline conditions. In the moderate-level con-
dition, it is possible that drivers might have insufficient resources for
effective tactical decision-making as their attention remained on sec-
ondary tasks; the secondary-task performance was not significantly
decreased in the moderate-level condition.

While we observed changes in driver behavior in response to sec-
ondary task demands, further investigation is required to conduct a
more robust statistical analysis. This would help examine how changes
in secondary task behavior (e.g., reduced attention) affect takeover
performance and the discrepancy between reaction time and takeover
success. Unfortunately, our study may have lacked sufficient statistical
power to confirm this effect. In Section 6.5, we address these limitations
and suggest future research directions.
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6.3. Real-time estimation of takeover performance in L2 driving vehicles

Our results indicated that ocular measures, such as dispersion of eye
movements and pupil diameter, were strongly correlated with takeover
performance. However, among the physiological features related to
ocular measures, the off-road glance rate did not have a significant effect
in either analysis. Although prior studies have closely linked the off-road
glance rate with takeover performance (Louw et al., 2019, Berghofer
etal., 2018), they mainly considered the context of visual-manual tasks,
which led drivers to share their visual operations with the monitoring
task (i.e., off-road glance behavior). Unlike these studies, our study
considered auditory tasks that did not require visual sharing with the
monitoring task. Therefore, the off-road glance behavior would be less
likely to occur and not vary across task conditions, leading to statistical
insignificance in our analyses.

Currently, commercial automated vehicles (e.g., Tesla and Ford)
monitor the off-road glance behavior of drivers and restrict the activa-
tion of automated driving features if the off-road glance behavior is
monitored (Barry, 2022). However, our results highlighted that the
current monitoring approach may not effectively monitor the degrada-
tion of the takeover performance caused by in-vehicle auditory in-
teractions. Instead of physiological contexts related to off-road glance
behavior, other physiological contexts need to be considered to monitor
the degradation of the takeover performance in L2 automated driving.
Our results showed that pupil diameter, dispersion of eye movements,
and IBI were significantly related to the takeover performance of a
driver.

Prior studies have suggested various approaches to obtain physio-
logical signals in vehicular environments. For example, Shin et al.
(2010) embedded electrocardiogram and photoplethysmography sen-
sors on steering wheels to monitor the physiological conditions of
drivers. This approach could effectively collect the physiological re-
sponses of drivers in L2 vehicles since the drivers need to constantly
have their hands on the wheel to activate the automation mode (Barry,
2022). Alternatively, similar to our study setting, such responses could
be collected using wearable devices, such as a smartwatch, by consid-
ering the popularity of such devices. Prior studies have shown that the
pupil diameter and dispersion of eye movements could be reasonably
measured using a low-cost camera (Wangwiwattana et al., 2018, Huynh
et al., 2022). A camera could be installed in a vehicle to collect such
physiological signals. Indeed, an existing camera in automated vehicles
could also be leveraged to collect such signals, given that recent auto-
mated vehicles from the major manufacturers (e.g., Tesla and Ford) have
started to equip camera-based driver monitoring systems to monitor the
off-road glance behavior of the drivers (Barry, 2022).

6.4. Toward context-aware adaptive automated driving

To enable drivers to successfully perform an OEDR task while they
engage in auditory interactions, we envision future L2 automated ve-
hicles that automatically adapt their driving style or auditory in-
teractions (i.e., context-aware adaptation approach). The majority of
drivers who participated in our interview (n = 13/17) reported that they
had prioritized safety and exhibited behavior changes in that they had
regulated their engagement in secondary tasks to maintain the perfor-
mance of the OEDR task. However, drivers are not always rational and
may suffer from various cognitive biases and errors. For example, they
may overestimate their driving/OEDR skill or underestimate the chance
to be involved in a driving accident (i.e., optimism bias) (DeJoy, 1989).
Furthermore, they may underestimate the potential impact of auditory
secondary tasks on their performance in an OEDR task (i.e., risk-taking
behaviors) (Fuller, 1991). In our study, drivers did not exhibit behavior
changes when they were performing moderate-level auditory tasks,
although these tasks degraded their takeover performance. Indeed,
overtrust in an imperfect L2 automation system might discourage
drivers from executing any behavior changes (Lee and See, 2004,

Wagner et al., 2018). Instead of relying on drivers (e.g., behavior
changes), the context-aware adaptive automation approach could help
assist drivers in such cases.

In L2 automated driving, the system controls both the longitudinal
and lateral positions of the vehicle; drivers are not involved in these
functions. This non-involvement can be beneficial in normal contexts.
However, in our study, some drivers expressed concerns of their non-
involvement while engaging in secondary tasks. In manual driving
contexts, while performing a secondary task, drivers tend to adjust their
driving styles to compensate for the additional workload that is induced
by the secondary task. During our interviews, one driver (P14) empha-
sized this difference, stating that if he was driving, he would “stop the
car before performing the task or reduce the speed.” He said, “I felt it was
not safe (to perform the OEDR task while engaging in auditory sec-
ondary tasks) because the (automated) vehicle did not automatically
stop or slow down.” Future automated driving systems may automati-
cally adjust their driving style while drivers engage in auditory sec-
ondary tasks.

Similarly, L2 automated vehicles may automatically reduce their
speed gradually, or change lanes to low-speed lanes when the takeover
performance of a driver is expected to be low. This deceleration
approach can help reduce the overall takeover difficulty for the driver
(e.g., slower speed shortens the stopping distance required after braking
is initiated), potentially aiding in collision avoidance. In addition to
context-aware driving adaptation, we can also consider auditory sec-
ondary task adaptation. Kim et al. proposed a secondary task adaptation
approach in which in-vehicle agents control auditory interactions (e.g.,
reducing the length of the auditory interactions) by considering the
interruptibility of drivers in manual driving contexts (see Section 6.3 in
(Kim et al., 2020)). Such an adaptation approach could also be applied
to in-vehicle voice assistants or auditory interfaces for L2 vehicles. For
example, in-vehicle voice assistants may decompose an auditory inter-
action into multiple micro-interactions, pause a micro-interaction, and
resume it at opportune moments when the takeover performance is
estimated to be high (Kim et al., 2020). Kim et al. (2018) showed that
vehicle-context sensor data can be used to find the opportune moments
when drivers can safely engage in auditory interactions in manual
driving contexts. Similarly, to find the opportune moments, the auto-
mated vehicles could monitor the in-situ physiological signals of a driver
(e.g., pupil diameter) and estimate their takeover performance, as dis-
cussed in Section 6.3.

Context-aware adaptation approaches could be potentially more
effective than restrictive approaches. Currently, restrictive approaches
are widely applied in commercial automated vehicles; the activation of
automated driving features is restricted when drivers are not holding the
steering wheel or are inattentive on the road (Barry, 2022). However,
such restrictive approaches may not be effective in practice (Creaser
et al., 2015, Akuchie, 2023, Klender, 2023). For instance, it was found
that some Tesla drivers slept at the wheel while using defeat devices to
deceive the driver monitoring system (e.g., monitoring off-road glance
behavior) into believing that they were attentive (Akuchie, 2023). In
addition, such restrictive approaches may negate the potential benefits
of providing auditory secondary tasks to drivers experiencing
under-load situations (or low levels of mental workload) (Mishler and
Chen, 2024, Vogelpohl et al., 2019). Literature suggests that auditory
secondary tasks can help drivers maintain their optimal performance in
an OEDR task when they solely perform a monitoring task alone over
long periods of time (Mishler and Chen, 2024), or experience drowsiness
(Vogelpohl et al., 2019). In such challenging scenarios, our findings and
the concept of context-aware adaptive automated driving could help
drivers maintain optimal performance in OEDR tasks.

6.5. Limitations and future work

Although our study demonstrated that different task demands could
influence takeover performance in L2 automated driving contexts, our



J. Hwang et al.

results should be carefully interpreted and generalized when applied to
real-world L2 automated driving vehicles. First, although we recruited a
broad age range and ensured equal gender representation among 50
participants to meet NHTSA guidelines and exceed the sample sizes of
previous studies (see Table 2), we acknowledge the need for a larger
sample size in future research to ensure sufficient statistical power to
detect the effects of secondary tasks on the takeover success. Next, our
participants experienced experimental scenarios during a practice ses-
sion preceding the experiment. Therefore, although they did not know
when critical events (e.g., jaywalking) would occur, they could expect
that such events might happen at some point and respond accordingly.
However, in real-world driving contexts without prior takeover training
(or experience), drivers may overestimate their ability to handle sudden
incidents due to various cognitive biases (e.g., capability over-
estimation, risk-taking behaviors, optimism bias) (DeJoy, 1989, Fuller,
1991, BROWN, 1990). As a result, the drivers may not exhibit behavior
changes (e.g., not reducing engagement in secondary tasks with high
demand). Thus, further research is needed to investigate how driver
behavior changes affect takeover performance in various takeover sce-
narios. Next, further in-depth research is required for a more rigorous
investigation into the impact of other factors on takeover performance.
The literature has shown that takeover performance can also be influ-
enced by the road environment, such as the complexity of the traffic
situation (Radlmayr et al., 2014), and the driver’s temporal conditions,
such as drowsiness (Naujoks et al., 2018) or emotional state (Sanghavi
et al., 2023, Sanghavi et al., 2020, Pan et al., 2024). Future studies
should comprehensively consider these factors alongside the secondary
task. While we demonstrated the feasibility of estimating takeover
performance by analyzing the physiological responses of drivers, further
investigation is required to develop reliable predictive models. Unfor-
tunately, in our study, such predictions were not feasible due to an
insufficient dataset.

7. Conclusion

We investigated the effects of auditory interaction on the takeover
performance during L2 automated driving. Our results showed that the
takeover performance was affected by the demands of the auditory in-
teractions, which could be monitored by observing the physiological
contexts of the drivers. Based on these findings, we discussed methods
for both the real-time estimation of the decreases in takeover perfor-
mance due to auditory interaction and the mitigation of this decrease.
We hope our results can contribute to the safe use of auditory in-
teractions in L2 automated driving contexts.
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